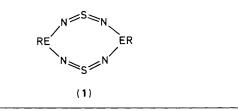
Preparation and X-Ray Crystal Structure of trans-(CO)₅Cr[Prⁱ₂NP(NSN)₂PNPrⁱ₂]Cr(CO)₅, a Binuclear Complex of a Planar P^{III}₂N₄S₂ Ring

Tristram Chivers,^a* Cees Lensink,^a Auke Meetsma,^b Johan C. van de Grampel,^b and Jan L. de Boer^b

^a Department of Chemistry, The University of Calgary, Calgary T2N 1N4, Alberta, Canada

^b Department of Inorganic Chemistry, University of Groningen, Nijenborgh 16, 9747 AG Groningen, The Netherlands

The reaction of $(CO)_5Cr(Pri_2NPCl_2)$ with $(Me_2N)_3S^+NSO^-$ in acetonitrile produces, in low yield, trans- $(CO)_5Cr[Pri_2NP(NSN)_2PNPri_2]Cr(CO)_5$ shown by X-ray crystallography to contain an almost planar $P_2N_4S_2$ ring.


Eight-membered rings of the type (1) (E = As) are readily obtained from the reaction of RAsCl₂ with either Me₃SiNSN-SiMe₃ (R = Me,¹ Ph,² mesityl²) or K₂NS₂ (R = Bu^t).³ Metathetical reactions of these reagents with RPCl₂ do not give (1) (E = P),⁴ however, and Herberhold *et al.* have recently reported that treatment of $Cr(CO)_5(PBu^tCl_2)$ with K₂SN₂ in acetonitrile produces $Cr(CO)_5[P(Bu^t)NSNSNH]$, a complex of a six-membered ring.⁵ We now describe the first example of a P^{III}₂N₄S₂ ring system, (1) (E = P, R = Pri₂N), which was isolated as a bis-Cr(CO)₅ complex. Surprisingly, the heterocyclc ring in this complex adopts an almost planar structure.

The synthesis of complexes of (1) (E = P) is based on our finding that a co-ordinated R₂PNSO ligand is converted to an acylic sulphur diimide R₂PNSNPR₂ in high yields upon treatment with potassium t-butoxide.⁶ The application of this method to RP(NSO)₂ complexes is shown here to provide a source of the co-ordinated ligand (1) (E = P, $R = Pri_2N$).

$$2ML_{x}[R_{3-n}P(NSO)_{n}] \xrightarrow{-nSO_{2}} L_{x}M[R_{3-n}P(NSN)_{n}PR_{3-n}]ML_{x} \quad (1)$$

Orange-red crystals of $(CO)_5Cr[Pri_2NP(NSN)_2PNPri_2]Cr-(CO)_5$ (2) were obtained in low yield (3%) from the reaction of $(Me_2N)_3S^+NSO^{-7}$ with $Cr(CO)_5(Pri_2NPCl_2)^8$ in a 2:1 molar ratio in acetonitrile at 23 °C followed by chromatography on silica using hexane/CH₂Cl₂ (2:1) as eluant: ³¹P{¹H} n.m.r. (in CDCl₃) + 112.5 p.p.m.; i.r. (Nujol): 1284s, 1193w, 1171m, 1151m, 1137w, 1114m, 1006m, 974s, 653vs, 560m, 458m cm⁻¹; (in CCl₄): 2060m,sh, 1990w, 1948s, cm⁻¹.

The structure of (2) was determined by X-ray crystallography.[†] The molecular geometry and atomic numbering

+ Crystal data: $C_{22}H_{28}Cr_2N_6O_{10}P_2S_2$ (2), M = 766.6, monoclinic, space group $P2_1/c$ (No. 14); at 110 K a = 13.389(3), b = 13.280(4), c = 18.431(3) Å, $\beta = 104.12(2)^\circ$, U = 3178 Å³, Z = 4, μ (Mo- K_{α}) = 9.5 cm⁻¹, F(000) = 1568, $D_c = 1.602$ g cm⁻³. Intensity data were collected at 110 K on an Enraf-Nonius CAD-4F diffractometer operating in the ω -2 θ mode and using Mo- K_{α} radiation ($\lambda = 0.71073$ Å, graphite monochromator). Total number unique reflections 5580, of which 2551 had $I > 2.5 \sigma(I)$. Crystal dimensions 0.075 × 0.11 × 0.17 mm. The structure was solved by Patterson techniques (SHELXS86) and direct methods (DIRDIF) and was refined by full-matrix least-squares techniques with anisotropic thermal parameters for the non-hydrogen atoms to R 0.062 and R_w 0.052.

Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

scheme are shown in Figure 1. The $As_2N_4S_2$ in (1) (E = As, R = Ph_{2}^{2} mesityl₂ Bu^{t3}) adopts a boat conformation and the ring geometry and structural parameters do not change substantially in the complex, Os₃(CO)₁₀[Bu^tAs(NSN)₂As-Bu^t].⁹ By contrast the geometry of the $P_2N_4S_2$ ring in (2) approaches planarity with the bulky Pr_2^iN and $Cr(CO)_5$ substituents in trans-positions. The molecule possesses a non-crystallographic inversion centre inside the ring, which is distorted towards a chair conformation with the following deviations from the best plane, P(1) + 0.08, N(1) - 0.05, S(1)-0.02, N(2) + 0.04, P(2) - 0.08, N(4) + 0.09, S(2) - 0.03, N(3)-0.09 Å. The bond angles of 150–153° at nitrogen in (2) are unusually large compared to the values of 128-135° found for (1) $(E = As)^{2,3}$ and the metal complex $Os_3(CO)_{10}[Bu^tAs-$ (NSN)₂AsBu^t],⁹ presumably as a consequence of the planarity of the ring, cf. $(NPF_2)_4$, $\langle PNP | 147^{\circ} 10$ The endocyclic P–N bond lengths are in the range 1.67–1.71 Å, cf. d(P-N)1.70–1.73 Å for complexes of $R_2PNSNPR_2$ (R = Ph,^{11,12} Bu^{t 13}), consistent with an increase in s character of the nitrogen bonding orbitals. The exocyclic P-N bond lengths of

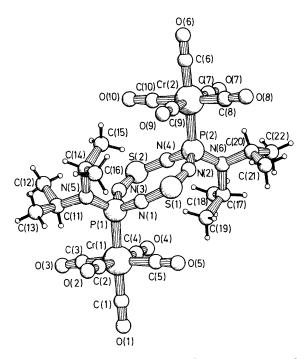


Figure 1. A PLUTO drawing of $(CO)_5Cr[Pri_2NP(NSN)_2PNPri_2]Cr-(CO)_5$ (2). Selected bond lengths (Å) and angles (°): P(1)–N(1) 1.668(8), P(1)–N(3) 1.690 (8), P(1)–N(5) 1.663(7), P(2)–N(2) 1.705(8), P(2)–N(4) 1.679(8), P(2)–N(6) 1.653(7), S(1)–N(1) 1.522(8), S(1)–N(2) 1.502(8), S(2)–N(3) 1.522(8), S(2)–N(4) 1.512(8); N(1)–P(1)–N(3) 110.0(4), N(2)–P(2)–N(4) 109.5(4), P(1)–N(1)–S(1) 150.2(6), P(1)–N(3)–S(2) 152.8(6), P(2)–N(2)–S(1) 152.7(6), P(2)–N(4)–S(2) 150.1(6), N(1)–S(1)–N(2) 125.4(5), N(3)–S(2)–N(4) 124.4(5).

ca. 1.66 Å and the almost planar geometry at these nitrogen atoms [sum of angles at N(5) 356.2°, at N(6) 356.7°] indicate strong N($p\pi$)–P($d\pi$) contributions, *cf.* (Pri₂NPO)₃¹⁴ and (CO)₅Cr(Pri₂NPO).¹⁵ The values of S–N bond lengths of 1.50–1.52 Å and the bond angles of 124–125° at sulphur are typical for cyclic sulphur diimides.^{2,3,9,16} Thus the overall structure appears to be that of a cyclic sulphur diimide with an almost planar ring conformation imposed by the bulky groups on phosphorus.

We propose that (2) is formed via a condensation reaction [equation (1), n = 2] in which (Me₂N)₃S+NSO⁻ serves as the base to promote SO₂ elimination. However, the reactions of the bifunctional complexes L_xM(RPCl₂) with NSO⁻ are more complicated than the corresponding reactions of L_xM(R₂PCl),⁶ as indicated by ³¹P n.m.r. spectra of reaction mixtures. Further investigations of these reactions are in progress in an effort to identify other products that decompose on a variety of chromatography columns. Finally we note that attempts to prepare arsenic analogues of the binuclear complex (2) from (1) (E = As, R = Ph, Bu¹) and Cr(CO)₅ (tetrahydrofuran) have produced only the mononuclear complexes, *cis*-Cr(CO)₄[RAs(NSN)₂AsR].¹⁷

Note added in proof: The preparation of cis-M(CO)₄[PhAs(NSN)₂AsPh] (M = Cr, Mo) and the X-ray crystal structure of the Mo derivative have also recently been reported.¹⁸

Financial support from N.S.E.R.C. (Canada) is gratefully acknowledged.

Received, 9th November 1987; Com. 1627

References

- 1 O. J. Scherer and R. Wies, Angew. Chem., Int. Ed. Engl., 1971, 10, 812.
- 2 J. Kuyper, J. J. Mayerle, and G. B. Street, *Inorg. Chem.*, 1979, **18**, 2237.
- 3 A. Gieren, H. Betz, T. Hübner, V. Lamm, M. Herberhold, and G. Guldner, Z. Anorg. Allg. Chem., 1984, 513, 160.
- 4 T. Chivers and C. Lensink, unpublished results.
 5 B. Wrackmeyer, K. Schamel, K. Guldner, and M. Herberhold, Z. Naturforsch., Teil B, 1987, 42, 703.
- 6 T. Chivers, C. Lensink, and J. F. Richardson, Organometallics, 1987, 6, 1904.
- 7 W. Heilemann and R. Mews, Chem. Ber., in the press.
- 8 R. B. King and N. B. Sadanani, Inorg. Chem., 1985, 24, 3136.
- 9 (a) T. Hubner, A. Gieren, Z. Kristallogr., 1986, 174, 95; (b) A. Gieren, T. Hübner, M. Herberhold, K. Guldner, and G. Suss-Fink, Z. Anorg. Allg. Chem., 1987, 544, 137.
- 10 H. M. McGeachin and F. R. Tromans, J. Chem. Soc., 1961, 4777.
- 11 T. Chivers, C. Lensink, and J. F. Richardson, Organometallics, 1986, 5, 819.
- 12 T. Chivers, C. Lensink, and J. F. Richardson, J. Organomet. Chem., 1987, 325, 169.
- 13 M. Herberhold, W. Bühlmeyer, A. Gieren, T. Hübner, and J. Wu, J. Organomet. Chem., 1987, 321, 51.
- 14 E. Niecke, H. Zorn, B. Krebs, and G. Henkel, Angew. Chem., Int. Ed. Engl., 1980, 9, 709.
- 15 E. Niecke, M. Engelmann, H. Zorn, B. Krebs, and G. Henkel, Angew. Chem., Int. Ed. Engl., 1980, 9, 710.
- 16 H. W. Roesky, Angew. Chem., Int. Ed. Engl., 1979, 18, 91.
- 17 T. Chivers, K. S. Dhatharthreyan, C. Lensink, and J. F. Richardson, *Inorg. Chem.*, in the press.
- 18 F. F. Edelman, C. Spang, M. Nottemeyer, G. M. Sheldrick, N. Kewelop, and H. W. Roesley, Z. Naturforsch., Teil B, 1987, 42, 1107.